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The dynamics of spins in semiconductor quantum dots often is controlled by their hyperfine coupling to
nuclear spins. We develop a straightforward and efficient approach to describe the dynamics and the effective
decoherence of the electron spins due to hyperfine coupling in realistic quantum dots. Systems with a large
number of nuclei and an arbitrary initial nuclear polarization for which the number of nuclei initially flipped
over is much less than the total number of nuclei are treated. This treatment employs a pole approximation
within a Schrödinger equation of motion for the state of the coupled electron and nuclear spin system, and it
allows us to treat systems with arbitrary initial conditions. We find that typical time scales for the effective spin
decoherence are on the order of tens of microseconds.
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The spin degree of freedom of electrons is of considerable
interest in contexts ranging from “spin electronic” devices to
implementations for quantum bits �qubits� in quantum com-
puting. A major obstacle in these applications is decoherence
due to coupling of the spin to its environment. For example,
a spin in a quantum dot �QD� is an attractive candidate for a
qubit, but the spin decoherence time must be longer than the
times needed to manipulate the spins in gate operations.

Sources of spin decoherence in quantum dots include pho-
non induced modulations of spin-orbit coupling1,2 and hyper-
fine coupling to nuclei.3,4 Recent work on spin relaxation due
to phonon scattering gives relatively long spin relaxation
times at low temperatures.1,2 For sufficiently high magnetic
fields, electron spin lifetimes on the order of milliseconds
have been measured.5 At low magnetic fields, however, the
hyperfine interaction between the electron spin and the un-
paired nuclear spins typically present in III-V semiconductor
quantum dots provides an unavoidable source of losses and
dominates the spin decoherence in dots. The effective deco-
herence in these systems arises from variations of hyperfine
coupling across the dot. Although strictly speaking the
coupled electron-nuclear spin system evolves coherently in
time, coupling to a large number of nuclei gives an effective
decoherence in realistic laboratory times. QDs have large
numbers of nuclei �104–106� with varying initial nuclear po-
larizations. Each of these two features presents formidable
difficulties in calculating the spin dynamics of these systems.

An approach for the electron spin dynamics for the case
of a fully polarized nuclear system has been given,3 and nu-
merical simulations for models of QDs with very small num-
bers of nuclei �N�20� have been made.4,6,7 In the case
where the external magnetic field is much larger than the
hyperfine coupling, the relaxation times can be described by
a standard perturbative approach.8 A master equation ap-
proach also has been developed in which the hyperfine inter-
action is switched on adiabatically.9 This method is appli-
cable to starting conditions for which the electron and spin
systems are decoupled, which is generally not the case for an
electron spin interacting with nuclei in solids. Recently, an

analytical model based on the Heisenberg equation of motion
for high magnetic fields and for the nuclear interaction
switched on adiabatically has also been given.10

Here, we present a straightforward method to describe the
spin dynamics in realistic QDs with large numbers of nuclei
and with varying initial polarizations. It is based on a
Schrödinger equation of motion approach for the wave func-
tion describing the system of coupled electron and nuclear
spins, and it uses a pole approximation that is applicable for
systems with large numbers of nuclei. It provides an efficient
method for calculations, and it allows us to treat systems
with initially coupled electronic and nuclear systems.

We consider the spin s of an electron in the conduction
band in a QD coupled to the nuclear spins Ii via the hyper-
fine Fermi contact interaction. For simplicity we take the
nuclear spins to have magnitude of 1 /2. An applied magnetic
field B along the z direction gives a Zeeman splitting, and the
total Hamiltonian is

H = �� + �z�sz + �−s+ + �+s−, �1�

�z = �
i

AiIi,z, �−�+� = �
i

Ai

2
Ii,−�+�. �2�

Here, �=�BgB where �B is the Bohr magneton and g is the
Zeeman g factor. Ai is the hyperfine coupling of the electron
spin in the QD to a nucleus where Ai=Av0���ri��2 and A is
the total strength of the hyperfine coupling in a unit cell.
v0=1 /n0 is the inverse density of nuclear spins, and ��ri� is
the electron wave function at the nuclear position ri. Thus, Ai
varies over the dot, and for a dot with N nuclear spins, Ai
�A /N. Dipole-dipole coupling becomes important only at
times longer than 10−4 s and is not included here.8 The
nuclear Zeeman interaction is much smaller than that for the
electron and is not included.

The time evolution of the electron spin is given by the
state vector ���t�� of the coupled electron-nuclear system
from i �

�t ���t��=H���t��, where � is taken to be 1. The z com-
ponent of the total spin of the coupled system, Mz=sz
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+�i=1
N Ii,z, is a conserved quantity, and the total number of

eigenstates is 2N+1. For a given direction of the electron spin
and for m of the N nuclear spins flipped down, there are

Nm = �N

m
	

arrangements of the nuclear spins in the QD. The total num-
ber of states for a given Mz is NMz

=Nm+Nm+1, where we see
that states with both m and m+1 nuclear spins flipped down
contribute to the states of a single Mz. Details of the classi-
fication and enumeration of the states of this system as well
as their use in finding the formal exact solution of the time-
dependent Schrödinger equation are given in Ref. 11. An
arbitrary state vector of the system can be written as a linear
superposition of orthonormal states with different Mz,

��Mz�m��t�� = �
Nm

Y
m��t��↓;
m�� + �
Nm+1

X
m+1��t��↑;
m + 1�� .

�3�

Here, �
m��= �
⇓�m
⇑�N−m�, with m=0,1 , . . . ,N, denotes all
arrangements of the m nuclear spins that are flipped down
among the total N nuclear spins, and �↑, ↓� are the electron
spin states. X
m+1��t� and Y
m��t� are the respective time-
dependent probability amplitudes.

The solutions are obtained for each value of Mz, and
the complete solution is the sum over all states ���t��
=�Mz�m�CMz�m���Mz�m��t��. The state is normalized giving

1 = �
Mz�m�

�CMz�m��2��
Nm

�Y
m��t��2 + �
Nm+1

�X
m+1��t��2
 . �4�

The time dependences of the average electron spin compo-
nents are

�sz�t�� =
1

2 �
Mz�m�

�CMz�m��2� �
Nm+1

�X
m+1��t��2 − �
Nm

�Y
m��t��2
 ,

�5�

�s+�t�� = �
Mz�m�

�
Mz�m−1�

CMz�m−1�
* CMz�m��

Nm

X
m�
* �t�Y
m��t� ,

�6�

�s−�t�� = �s+�t��*, �7�

where s�=sx� isy.
It is straightforward to show that for a given Mz, the

Schrödinger equation with the Hamiltonian in Eq. �1� gives
the following closed set of simultaneous equations for the
amplitudes:

iẎ
m��t� = − B
m�Y
m��t� + �
j�
m�

N
Aj

2
X
m+1�,j�t� , �8�

iẊ
m+1�,j�t� = B
m+1�,jX
m+1�,j�t� + �
i=1


m�
Ai

2
Y
m+1�/i�t� . �9�

Here, B
m�= ��+A−�i=1

m�Ai� /2, B
m+1�,j =B
m�−Aj /2, and A

=�i=1
N Ai. The sum in Eq. �8� � j�
m�

N is over all nuclei exclud-
ing the ones flipped down for the arrangement 
m�, and the
sum in Eq. �9� �i=1


m� is over all nuclei flipped down for the
arrangement 
m�. We have introduced the following nota-
tions: X
m+1�,j is the amplitude associated with the electron
spin up and m+1 nuclear spins down, which is obtained by
flipping one of the N−m up nuclear spins, labeled by j, thus
adding one more nuclear spin to the previous m-down spins;
Y
m+1�/i is the amplitude of a state with m nuclear spins down
obtained by flipping the ith nuclear down spin to up in the
group of m+1 down nuclear spins. Equations �8� and �9� are
converted to linear simultaneous algebraic equations with
general initial conditions at t=0 by taking Laplace trans-
forms. The exact solutions for the amplitudes are found as
follows:

Ȳ
m��	� =
1

i	 + B
m� − �
j�
m�

�Aj/2�2

i	 − B
m+1�,j


�iY
m��0� + �
l�
m�

N iX
m+1�,l�0�Al/2
i	 − B
m+1�,l

+ �
i=1


m�

�
l�
m�

N AiAlȲ
m+1�/l�	�/4
i	 − B
m+1�,l


 , �10�

X̄
m+1��	� =
1

i	 − B
m+1�
�iX
m+1��0� + �

i=1


m� Y
m+1�/i�0�Ai/2
i	 + B
m+1�/i

+ �
i=1


m�
Ai/2

i	 + B
m+1�/i
�

l�
m�

N AlX̄
m+1�,l/i�	�

2

 . �11�

We now consider the solutions of Eqs. �10� and �11� in
time using an inverse Laplace transform. The large number
of nuclei precludes obtaining exact results. However, we
note that in the case of predominant initial nuclear polariza-
tion m�N one can make useful approximations for the am-

plitudes. The set of equations for the amplitudes X̄
m��	� and

Ȳ
m��	�, and subsequently for X
m��t� and Y
m��t�, can actu-
ally be given as an infinite series of terms.12 There are di-
mensionless contributions in X
m��t� and Y
m��t� proportional
to AiAj with denominators that are second order in quantities
such as B
m�. For large N and m�N, these terms are small to
the order of 1 /N2 and we drop them. In addition, there are
“self-energy” corrections to quantities such as B
m� of order
Ai

2 in the denominators of X̄
m��	� and Ȳ
m��	�, and we also
drop them. Here, we use the fact that the individual Ai
�A /N are small compared to A, and �+A dominates when it
appears in combination with any subset of Ai when m�N. In
effect, we have replaced a series of poles for the amplitudes

X̄
m��	� and Ȳ
m��	� by a single pole, hence, the term “pole
approximation” for this approach. Then, the solutions are
found to be
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Y
m��t� � Y
m��0�eiB
m�t/2


�1 − �
j=1


m�

�
l�
m�

N
AjAl

8�� + A��B
m� − B
m+1�/l�


�1 − ei�B
m�−B
m+1�/l�t/2�
 − X
m+1��0�eiB
m�t/2


 �
l�
m�

N
Al

4�� + A�
�1 − e−i�B
m�+B
m+1�,l�t/2� , �12�

X
m+1��t� � X
m+1��0�e−iB
m+1�t/2


�1 − �
j=1


m+1�

�
l�
m+1�

N
AjAl

8�� + A��B
m+1�,l − B
m+1�,j�


�1 − e−i�B
m+1�,l−B
m+1�,j�t/2�
 + Y
m��0�e−iB
m+1�t/2


 �
j=1


m+1�
Aj

4�� + A�
�1 − ei�B
m�+B
m+1�,j�t/2� . �13�

We note that the results in Eqs. �12� and �13� give the nor-
malization in Eq. �4� correctly for all frequencies to order A2

and that these results give the exact result for the short time
limit t→0. This approach gives accurate results for large N
and m�N providing that �+A in the denominator does not
become small.

For the purpose of illustrating these results, we choose an
initial state in which m spins are flipped down and in which
each arrangement of the m nuclear spins is equally likely.
The initial probablity is taken to be different for the two
directions of the electron spin. This can be thought of as the
equal probablity choice of the starting state and is specified
by the initial conditions Y
m��t=0�= ȳm /�Nm and X
m��t=0�
= x̄m /�Nm, where ȳm and x̄m are constants and all other am-
plitudes are zero. We find the following analytical expres-
sions for the expectation values of the electron spin compo-
nents:

�sz�t�� � −
1

2
��x̄m�2 − �ȳm�2��1 − Re

1

Nm
�

m�

�
j=1


m�
Aj

2�� + A�
G
m�
 ,

�14�

�s+�t�� �
x̄m

* ȳm

Nm
�

m�

e2iB
m�t/�. �15�

Here, �
m� means summing over all possible arrangements of
the initially down spins. The following notation is also used:

G
m��t� = �
l�
m�

Al/2
B
m� − B
m+1�/l

�1 − ei�B
m�−B
m+1�/l�t/2�� .

Here, � is recovered to give the correct units. The function
G
m� is present if there is at least one nucleus flipped down,
and G
m� is zero if the nuclei are initially fully polarized. For
m�N, the sum in G
m� is �l�
m�

N ��l
N, and it is converted

into an integral �l
N→ 1

v0
�d3r. A similar treatment can be

made for the summation in Eq. �15�. Inserting the definition
for B
m� and performing the summation, one obtains that

1
Nm

�
m�e
2iB
m�/��e2i��+A�t/�J�t�m, where J�t�= 1

N�i=1
N eiAi�t�/�. For

these evaluations, the summations are again turned into inte-
grations here.

In Fig. 1, we show the time dependences of the electron
spin components for 75% initial nuclear polarization for N
=104. For illustration, we have chosen a spherical quantum

dot of radius R, and use ���ri��2= 1
�3/2�R/2�3 e−4ri

2/R2
for the elec-

tron wave function. We note that there are rapid oscillations
in �s+�t��. They arise from the exponential factor ei��+A�t/�.
The slower decays arise from the contributions of Aj �A /N
in both �sz�t�� and �s+�t��. The oscillations in the �sz�t�� dy-
namics are more damped as compared to the ones in �s+�t��
due to the prefactor Al /2�B
m�−B
m+1�/l�. The time depen-
dences of �sz�t�� and �s+�t�� are always nonexponential.
Strictly speaking, the coupled system of electron and nuclear
spins is secular and does not have dissipation. Revivals of
the electron spin will occur at much longer times than those
shown here. Nonexponential time decay was also found in
other works.3,9 The evolution of the decay envelope also has
been found to be nonexponential using analytical methods
for systems with predominant initial nuclear polarization in
which the nuclear interaction is switched on adiabatically10

and in studies in which numerical approaches were used.6,7

A limiting case of these results is given by that for ini-
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FIG. 1. �a� The time dependence of �sz� from Eq. �13� for initial
nuclear polarization of 75% is shown. �b� The time dependence of
�s+� from Eq. �14� for initial nuclear polarization of 75% is shown.
We take A=90 �eV �GaAs� and �=A.
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tially fully polarized nuclei. For this case, we take the prob-
ability of the initial electron being up to be x̄0 and the prob-
ability of its being down to be ȳ0. Then, we find that

�sz�t�� �
1

2��x̄0�2 − �ȳ0�2 + �ȳ0�2


Re �
i=1

N
Ai

2

4�� + A�2 �1 − e−2i��+A�t/�eiAit/2��
 ,

�16�

�s+�t�� �
1

2
x̄0

*ȳ0
*ei��+A�t/�. �17�

In Fig. 2, the time evolution for this case is given. There are

rapid oscillations coming from contributions �e−2i��+A�t/� and
slower envelop from contributions �eiAit/2�. We note that in
this case, the time-dependent contributions are of order of
�1 /N smaller than �sz�t=0��, a point that has been made
earlier.3,9,10 In the fully polarized case, the long time enve-
lope of �sz�t�� has a time scale of 80 �s, which is longer than
the time scale for the 75% nuclear polarization above.

The long time behavior of �sz�t�� and �s��t�� also can be
obtained by evaluating Eqs. �14� and �16� at small distances
from the center of the dot. In this way, we find that for the
initially partially polarized system with m spins down,
�sz�t����� /At�3�m+1�/2 for long times and that for the initially
fully polarized system �sz�t����� /At�3/2, which is consistent
with the results of Refs. 3 and 9. We find that the long time
behavior of �sz,��t�� depends on the dimensionality of the
system and on the shape of the quantum dot.3,9 The explicit
form of the decay functions from Eqs. �14�–�16� allow one to
obtain results for varying dot sizes and forms.

In summary, we have given a method to calculate the time
dependence of electron spin components coupled by hyper-
fine interactions to a large number of nuclei with predomi-
nant initial polarization in quantum dots. This method is
straightforward and accurate, it allows us to treat efficiently
systems with general starting conditions, and it can be used
to study relatively wide range of systems with varying di-
mensionality, quantum dot shape and initial nuclear spin po-
larization.
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FIG. 2. The time dependence of �sz� from Eq. �16� for the fully
polarized case with hyperfine coupling A=90 �eV and �=A.
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